Overexpression of NPR1 in Brassica juncea Confers Broad Spectrum Resistance to Fungal Pathogens
نویسندگان
چکیده
Brassica juncea (Indian mustard) is a commercially important oil seed crop, which is highly affected by many biotic stresses. Among them, Alternaria leaf blight and powdery mildew are the most devastating diseases leading to huge yield losses in B. juncea around the world. In this regard, genetic engineering is a promising tool that may possibly allow us to enhance the B. juncea disease resistance against these pathogens. NPR1 (non-expressor of pathogen-related gene 1) is a bonafide receptor of salicylic acid (SA) which modulates multiple immune responses in plants especially activation of induced and systemic acquired resistance (SAR). Here, we report the isolation and characterization of new NPR1 homolog (BjNPR1) from B. juncea. The phylogenetic tree constructed based on the deduced sequence of BjNPR1 with homologs from other species revealed that BjNPR1 grouped together with other known NPR1 proteins of Cruciferae family, and was nearest to B. napus. Furthermore, expression analysis showed that BjNPR1 was upregulated after SA treatment and fungal infection but not by jasmonic acid or abscisic acid. To understand the defensive role of this gene, we generated B. juncea transgenic lines overexpressing BjNPR1, and further confirmed by PCR and Southern blotting. The transgenic lines showed no phenotypic abnormalities, and constitutive expression of BjNPR1 activates defense signaling pathways by priming the expression of antifungal PR genes. Moreover, BjNPR1 transgenic lines showed enhanced resistance to Alternaria brassicae and Erysiphe cruciferarum as there was delay in symptoms and reduced disease severity than non-transgenic plants. In addition, the rate of disease spreading to uninfected or distal parts was also delayed in transgenic plants thus suggesting the activation of SAR. Altogether, the present study suggests that BjNPR1 is involved in broad spectrum of disease resistance against fungal pathogens.
منابع مشابه
Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance.
The recently cloned NPR1 gene of Arabidopsis thaliana is a key regulator of acquired resistance responses. Upon induction, NPR1 expression is elevated and the NPR1 protein is activated, in turn inducing expression of a battery of downstream pathogenesis-related genes. In this study, we found that NPR1 confers resistance to the pathogens Pseudomonas syringae and Peronospora parasitica in a dosag...
متن کاملOverexpression of (At)NPR1 in rice leads to a BTH- and environment-induced lesion-mimic/cell death phenotype.
Systemic acquired resistance (SAR) is an inducible defense response that protects plants against a broad spectrum of pathogens. A central regulator of SAR in Arabidopsis is NPR1 (nonexpresser of pathogenesis-related genes). In rice, overexpression of Arabidopsis NPR1 enhances plant resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae. This report demonstrates that overexpression o...
متن کاملStrong suppression of systemic acquired resistance in Arabidopsis by NRR is dependent on its ability to interact with NPR1 and its putative repression domain.
Systemic Acquired Resistance (SAR) in plants confers lasting broad-spectrum resistance to pathogens and requires the phytohormone salicylic acid (SA). Arabidopsis NPR1/NIM1 is a key regulator of the SAR response. Studies attempting to reveal the function of NPR1 and how it mediates SA signaling have led to isolation of two classes of proteins that interact with NPR1: the first class includes ri...
متن کاملAlteration of TGA factor activity in rice results in enhanced tolerance to Xanthomonas oryzae pv. oryzae.
In dicotyledonous plants broad-spectrum resistance to pathogens is established after the induction of the systemic acquired resistance (SAR) response. In Arabidopsis the NPR1 protein can regulate SAR by interacting with members of the TGA class of basic, leucine-zipper transcription factors to alter pathogenesis-related (PR) gene expression. Overexpression of (At)NPR1 in Arabidopsis enhances re...
متن کاملInducers of Plant Systemic Acquired Resistance Regulate NPR1 Function through Redox Changes
NPR1 is an essential regulator of plant systemic acquired resistance (SAR), which confers immunity to a broad-spectrum of pathogens. SAR induction results in accumulation of the signal molecule salicylic acid (SA), which induces defense gene expression via activation of NPR1. We found that in an uninduced state, NPR1 is present as an oligomer formed through intermolecular disulfide bonds. Upon ...
متن کامل